треугольного импульса) на поверхность полуплоскости (задача Лэмба) // Геология и геофизика Юга России. – 2020. – № 4. – С. 164-174.

6. *Мусаев* В.К. Математическое моделирование нестационарных волн напряжений в деформируемых телах при ударных, взрывных и сейсмических воздействиях. – Москва: Российский университет транспорта, 2021. – 629 с.

7. *Musayev V.K.* Mathematical Modeling of Stresses Under Unsteady Wave Action in Geo-Objects // Power Technology and Engineering. – 2023. – Volume 57. – P. 351-364.

8. *Musayev V.K.* Mathematical Modeling of Explosive and Seismic Impacts on an Underground Structure // Power Technology and Engineering. – 2024. – Volume 57. – P. 875-881.

Мусаев В.К.

Численное моделирование сосредоточенного вертикального взрывного воздействия на плиту со сплошным фундаментом

Аннотация: Приводится информация о математическом моделировании взрывных волн в системе плита со сплошным фундаментом. Решена задача о сосредоточенном воздействии на плиту со сплошным фундаментом.

Ключевые слова: вычислительная волновая теория, вычислительная программа Мусаева В.К., плита, сплошной фундамент

Некоторые вопросы в области моделирования нестационарных динамических задач рассмотрены в следующих работах [1-8]. В работах [1-8] приведена информация о верификации моделирования нестационарных волн напряжений.

Рассматривается задача о моделировании взрывного воздействия на плиту со сплошным фундаментом и упругим основанием при воздействии в виде треугольника (рисунки 1-2). Исследуемая задача впервые решена Мусаевым В.К. с помощью разработанной методики, алгоритма и комплекса программ [1-8].

Рисунок 1 – Постановка задачи. Схема В.К. Мусаева

Рисунок 2 – Импульсное воздействие в виде треугольника. График В.К. Мусаева

Начальные условия приняты нулевыми. В точке H приложено сосредоточенное вертикальное взрывное воздействие σ_y , которое при $0 \le n \ge 11$ ($n = t/\Delta t$) изменяется линейно от 0 до P, а при $11 \le n \ge 21$ от P до 0 ($P = \sigma_0$, $\sigma_0 = -0,1$ МПа (-1 кгс/см²)). Граничные условия для контура IJKA при t > 0 $u = v = \dot{u} = \dot{v} = 0$. Отраженные волны от контура IJKA не доходят до исследуемых точек при $0 \le n \le 100$. При расчетах приняты следующие исходные данные. Для плиты и сплошного фундамента: $H = \Delta x = \Delta y$; $\Delta t = 2,788 \cdot 10-6$ с; $E = 3,15 \cdot 10.4$ МПа ($3,15 \cdot 10.5$ кгс/см2); v = 0,2; $\rho = 0,255 \cdot 104$ кг/м3 ($0,255 \cdot 10-5$ кгс с2/см4); $C_p = 3587$ м/с; $C_s = 2269$

м/с. Для среды: $H = \Delta x = \Delta y$; $\Delta t = 5,43 \cdot 10$ -6 с; $E = 0,36 \cdot 10$ 4 МПа (0,36 · 10 5 кгс/см2); V = 0,36; $\rho = 0,122 \cdot 104$ кг/м3 (0,122 · 10-5 кгс c2/см4); $C_p = 1841$ м/с; $C_s = 1042$ м/с. Решается система уравнений из 16016004 неизвестных.

Рисунок 3 – Точки A1-A10, в которых получены контурные напряжения. Схема В.К. Мусаева

Рисунок 4 – Точки *C*1-*C*10, в которых получены перемещения и траектории перемещений. Схема В.К. Мусаева

Рисунок 5 – Изменение упругого контурного напряжения во времени в точке A1. График В.К. Мусаева

Рисунок 6 – Изменение упругого контурного напряжения во времени в точке *A*2. График В.К. Мусаева

Рисунок 7 – Изменение горизонтального перемещения в точке С1 во времени. График В.К. Мусаева

Рисунок 8 – Изменение вертикального перемещения в точке C1 во времени. График В.К. Мусаева

Рисунок 9 – Изменение траектории перемещений в точке *C*1. График В.К. Мусаева

Рисунок 10 – Изменение траектории перемещений в точке *C*2. График В.К. Мусаева

Начальные условия приняты нулевыми. В точке *H* приложено сосредоточенное вертикальное взрывное воздействие σ_y , которое при $0 \le n \ge 11$ $(n = t/\Delta t)$ изменяется линейно от 0 до *P*, а при $11 \le n \ge 21$ от *P* до 0 $(P = \sigma_0, \sigma_0 = -0, 1 \text{ МПа} (-1 \text{ кгс/см}^2))$. Граничные условия для контура *IJKA* при t > 0 $u = v = \dot{u} = \dot{v} = 0$. Отраженные волны от контура *IJKA* не доходят до исследуемых точек при $0 \le n \le 100$. При расчетах приняты следующие исходные данные. Для плиты и сплошного фундамента: $H = \Delta x = \Delta y$; $\Delta t = 2,788 \cdot 10^{-6}$ с; $E = 3,15 \cdot 10^{-4}$ МПа $(3,15 \cdot 10^{-5} \text{ кгс/см}^2)$; v = 0,2; $\rho = 0,255 \cdot 10^4$ кг/м³ $(0,255 \cdot 10^{-5} \text{ кгс с}^2/\text{см}^4)$; $C_p = 3587$ м/с; $C_s = 2269$ м/с. Для среды: $H = \Delta x = \Delta y$; $\Delta t = 5,43 \cdot 10^{-6}$ с; $E = 0,36 \cdot 10^{-4}$ МПа $(0,36 \cdot 10^{-5} \text{ кгс/см}^2)$; v = 0,36; $\rho = 0,122 \cdot 10^4 \text{ кг/м}^3$ $(0,122 \cdot 10^{-5} \text{ кгс с}^2/\text{см}^4)$; $C_p = 1841$ м/с; $C_s = 1042$ м/с. Решается система уравнений из 16016004 неизвестных.

Контурное напряжение получено в точках A1-A10 (рисунок 3). В точках A1 и A2 (рисунки 5-6) показано изменение контурного напряжения на свободной поверхности плиты во времени. Компоненты перемещений получены в точках C1-C10 (рисунок 4). В точке *C*1 (рисунок 7, 8) показано изменение компонентов перемещений на свободной поверхности плиты во времени. Компоненты траектории перемещений получены в точках *C*1-*C*10 (рисунок 4). В точках *C*1 и *C*2 (рисунок 9, 10) показано изменение траектории компонентов перемещений на свободной поверхности плиты во времени.

Выводы

1. Для решения динамической теории упругости, при нестационарных волновых воздействиях, разработаны методика, алгоритм и комплекс программ.

2. Решена задача о внешнем сосредоточенном вертикальном взрывном воздействии на систему плита со сплошным фундаментом на упругом основании. Взрывное воздействие моделируется в виде треугольного импульса. Получены контурные напряжения, перемещения и траектории перемещений.

3. Проведенные исследования позволили создать математический мониторинг для оценки безопасности сложных технических объектов при нестационарных взрывных воздействиях на плиту с различной конфигурацией фундамента.

Литература:

1. *Musayev V.K.* Estimation of accuracy of the results of numerical simulation of unsteady wave of the stress in deformable objects of complex shape // International Journal for Computational Civil and Structural Engineering. – 2015. – Volume 11, Issue 1. – P. 135-146.

2. *Musayev V.K.* On the mathematical modeling of nonstationary elastic waves stresses in corroborated by the round hole // International Journal for Computational Civil and Structural Engineering. -2015. – Volume 11, Issue 1. – P. 147-156.

3. Мусаев В.К. Математическое моделирование нестационарных волн напряжений в деформируемых телах при ударных, взрывных и сейсмических воздействиях. – М.: Российский университет транспорта, 2021. – 629 с.

4. *Мусаев В.К.* Математическое моделирование переходных процессов в 10-этажном здании, представленных в виде функций Хевисайда // Academia. Архитектура и строительство. – 2022. – № 2. – С. 92-98.

5. Мусаев В.К. Компьютерное моделирование нестационарных упругих волн напряжений в консоли и десятиэтажном здании при фундаментальном воздействии в виде функции Хевисайда // РЭНСИТ: Радиоэлектроника. Наносистемы. Информационные технологии. – 2022. – № 14(2). – С.187-196.

6. *Musayev V.K.* Modeling of seismic waves stresses in a half-plane with a vertical cavity filled with water (the ratio of width to height is one to ten) // International Journal for Computational Civil and Structural Engineering. -2022. – Volume 18, Issue 3. – P. 114-125.

7. *Musayev V.K.* Mathematical Modeling of Stresses Under Unsteady Wave Action in Geo-Objects // Power Technology and Engineering. – 2023. – Volume 57. – P. 351-364.

8. *Musayev V.K.* Mathematical Modeling of Explosive and Seismic Impacts on an Underground Structure // Power Technology and Engineering. – 2024. – Volume 57. – P. 875-881.